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ABSTRACT 

Performers in time-stressed, information-rich tasks develop rule-based, simplification strategies 
to cope with the severe cognitive demands imposed by judgment and decision making. Linear 
regression modeling, proven useful for describing judgment in a wide range of static tasks, may 
provide misleading accounts of these heuristics. That approach assumes cue-weighting and cue-
integration are well described by compensatory strategies. In contrast, evidence suggests that 
heuristic strategies in dynamic tasks may instead reflect rule-based, noncompensatory cue usage. 
We therefore present a technique, called Genetics-Based Policy Capturing (GBPC), for inferring 
noncompensatory, rule-based heuristics from judgment data, as an alternative to regression. In 
GBPC, rule-base representation and search uses a genetic algorithm, and fitting the model to data 
uses multi-objective optimization to maximize fit on three dimensions: a) completeness (all 
human judgments are represented); b) specificity (maximal concreteness); and c) parsimony (no 
unnecessary rules are used). GBPC is illustrated using data from the highest and lowest scoring 
participants in a simulated dynamic, combat information center (CIC) task. GBPC inferred rule-
bases for these two performers that shed light on both skill and error. We compare the GBPC 
results with regression-based Lens Modeling of the same data set, and discuss how the GBPC 
results allowed us to interpret the high scoring performer’s highly significant use of unmodeled 
knowledge (C=1) revealed by Lens Model analysis. The GBPC findings also allow us to now 
interpret a similarly high use of unmodeled knowledge (C=1) in a previously published Lens 
Model analysis of a different data set collected in the same experimental task. We conclude by 
discussing training implications, and also prospects for the development of integrated GBPC 
models of both human judgment and the task environment, thus providing a noncompensatory 
formulation of the Lens Model (a Genetics-Based Lens Model, or GBLM) of the integrated 
human-environment system. 
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I. INTRODUCTION 

 Two-hundred and ninety people were killed on July 3, 1988 when the USS Vincennes 
mistakenly shot down an Iran Air commercial jetliner over the Persian Gulf (Fogarty, 1988). As 
a result of this tragedy, the U.S. Office of Naval Research established a research program on 
Tactical Decision Making Under Stress, or TADMUS (Collyer & Malecki, 1998). A central goal 
of the 7-year TADMUS program was to better understand human strengths and limitations in 
coping with time-stress, technological complexity, and situational ambiguity while performing 
judgment and decision making tasks. The TADMUS program spawned a wide range of empirical 
and theoretical research, characterized by close involvement among academics, government 
researchers, and the naval operational community. These investigators were united by a shared 
vision that an improved understanding of human performance in dynamic, uncertain 
environments could better support the design of future military training, aiding, and display 
systems, and thus hopefully reduce the potential for future incidence like the Vincennes tragedy. 

 The research we present in this paper was one of the many efforts initiated and supported 
under the TADMUS program (for a comprehensive account of TADMUS research products see 
Cannon-Bowers & Salas, 1998). As described in a chapter written with our colleagues in that 
volume (Kirlik, Fisk, Walker, & Rothrock, 1998), one of the initial steps in our own research 
was to visit a naval pre-commissioning team training site, consisting of a full-scale hardware and 
software simulation of a ship-based Combat Information Center (CIC). At this site entire CIC 
teams receive tactical decision making and crew coordination training just prior to taking to sea 
and conducting active operations. During these visits we were impressed by the tremendous 
amount of time and resources devoted to realism in both simulator and scenario design. At the 
same time, however, we were distressed by the comparatively little time and few resources 
devoted to providing teams with diagnostic feedback on the positive and negative aspects of their 
performance. Feedback given to trainees consisted of over-the-shoulder coaching, which was 
often disruptive and highly idiosyncratic to a particular coach's operational experiences, and 
team-level, classroom debriefing, which was highly abstract and delayed considerably from the 
training exercise itself. As a result of these observations, we made one focus of our research 
efforts under TADMUS to develop improved methods for performance measurement and 
feedback enhancement. One of the two techniques created for this purpose was a method for 
displaying real-time feedback to the trainee, embedded within training simulation displays, on 
dynamic allocation of attention to high priority events. Details on this training intervention and 
its empirical evaluation can be found in (Kirlik, Fisk, Walker, & Rothrock, 1998). 

The purpose in the present article is to describe the second of the two feedback 
enhancement techniques we developed under TADMUS: a methodology for inferring, from 
behavioral data, the heuristic judgment strategies used by participants to cope with the time-
stress and uncertainty inherent in complex, operational environments. This methodology may 
hold promise for advances in training technology, by making it possible to infer a performer's 
potential misunderstandings or oversimplifications of a judgment task from that performer’s own 
training history. Feedback could then be conceivably be targeted toward eliminating or at least 
reducing these misunderstandings or oversimplifications (for a more elaborate discussion of 
embedded-feedback training system design, see Kozlowski, Toney, Mullins, Weissbein, Brown, 
& Bell, 2001). 
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 The paper is organized in six sections. In Section II, we review the literature on how 
performers in time-stressed, information-rich environments cope with the cognitive demands 
imposed by judgment and decision tasks in order to motivate the development of our technique 
for inferring judgment strategies from behavioral data. In Section III, we briefly describe the 
historically predominant method for making such inferences, linear regression-based policy 
capturing, and more specifically, Brunswik’s Lens Model. We conclude that section by 
discussing why the regression-based inferential approach may yield descriptions of judgment 
strategies that are inconsistent with the empirical findings described in the previous section. That 
discussion motivates Section IV, in which we present our noncompensatory, inferential 
technique based on genetic algorithms and multi-objective optimization for identifying rule-
based heuristic strategies from judgment data, which we call Genetics-Based Policy Capturing 
(GBPC). The constructs and mathematical formalisms underlying the GBPC technique are 
described in detail, using a running example to illustrate each stage of model development. 
Section V is devoted to an empirical evaluation of the utility of the approach. Specifically, we 
create and compare both Lens Models and rule-based models of the same judgment data, 
showing how the latter helps to resolve difficulties in interpreting the regression-based 
representations, and also in interpreting an anomaly in a previously published Lens Modeling 
research using the same laboratory task (Bisantz, Kirlik, Gay, Phipps, Walker, & Fisk, 2000).  

 The paper concludes in Section VI with a discussion of training implications, and 
prospects for the development of a noncompensatory formulation of the Lens Model by using the 
GBPC technique to model both the human judge and the task environment. Such an approach, 
currently being developed, would result in a Genetics-Based Lens Model or GBLM of the entire 
performer-environment system. We are currently working toward a degree of formalization of 
the GBLM on a par with the original Lens model, and if successful, the GBLM would allow for 
the types of decompositions of judgment performance and analyses of adaptation enabled by the 
original Lens Model, but under the assumptions that both human judgment and the task 
environment are both well described in a rule-based, rather than linear-additive, format. 

II. COPING STRATEGIES IN DYNAMIC TASKS 

 Human-machine systems researchers have been investigating how performers cope with 
time-pressure, complexity, and uncertainty in dynamic task environments since at least the 1970s 
(Sheridan & Johannsen, 1976). Early attempts presumed that both the task environments 
themselves and operator behavior could be usefully described using formal, analytical techniques 
from the decision sciences. As described by Klein (1999), these early attempts, based largely on 
prescriptive decision theory, failed to provide significant leverage for training and design, largely 
for two reasons. First, they were overly restrictive: human judgment and decision making in 
operational tasks is concerned with a wider range of phenomena than merely the crystallized 
moment of choice. While prescriptive decision theories focus almost exclusively on the single-
shot selection of an alternative, judgment and decision making in operational settings may 
additionally involve situation assessment, actions taken to gather additional information, 
generating plausible hypotheses and alternatives, and so on. The Naturalistic Decision Making 
(NDM) paradigm (Klein, 1999; Klein, Orasanu, Calderwood, & Zsambok, 1993) has come to 
represent a broadened view of judgment and decision making, with a focus on studying "how 
people use their experience to make decisions in field settings" (Klein, 1999, p. 97). 
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 NDM's focus on how people use experience touches on the second reason why 
prescriptive decision analysis has not proven very useful for system design and training. 
Prescriptive judgment and decision models provide few resources to represent the influence of 
experience on human behavior and performance (Orasanu & Connolly, 1993; Kirlik & Bisantz, 
1999). In contrast, empirical studies of experienced performers in dynamic, uncertain 
environments nearly always find that a central achievement of learning is the development of 
"pre-established routines, heuristics, and short-cuts" (Reason, 1987, p. 468). Even those 
conducting empirical research within the cognitively-broadened NDM paradigm consistently 
find that 80 to 90% of judgments or decisions made by experienced performers are made in a 
rapid, intuitive process of "recognition" (Klein, 1999). Similar modes of rapid, situation-
response, judgment and decision making have been found in a wide variety of dynamic, 
uncertain contexts, and have been described with a host of psychological constructs, including 
"pattern matching" (Rouse, 1983), "rule-based behavior" (Rasmussen, 1983), and "perceptual 
heuristics" (Kirlik, Walker, Fisk, & Nagel, 1996; Kirlik, Miller, & Jagacinski, 1993). 

Despite the theoretically subtle differences in the language used to describe this type of 
rapid, intuitive mode of judgment and decision making, substantial evidence now exists that 
experienced performers in dynamic task environments will develop experiential, heuristic 
strategies to cope with uncertainty and time-stress. This conclusion does not imply, of course, 
that a performer, however experienced, will have a heuristic solution available to meet the 
demands imposed by every task situation. Inevitably, rare events will occur that defeat the 
performer's available heuristics, and may thereby either initiate a more elaborate, knowledge-
based decision process (Cohen, Freeman, & Thompson, 1997; Kaempf, Klein, Thordsen, & 
Wolf, 1996; Rasmussen, 1983), or result in human error (Reason, 1987).  

 This finding, however, does not alter the fact that a majority of experienced judgments 
and decisions in dynamic tasks, both productive and unproductive alike, are made in a heuristic 
fashion. Design and training interventions must reflect this fact. Specifically, this means that task 
analysis, interface design, and training should focus on identifying the possibly subtle cues and 
situations to which a performer either does, or should, attend (Klein, 1999; Kirlik, 1995), and on 
how well the performer can productively use this information. The technique presented in this 
paper is intended to provide an additional resource to meet this need. 

III. INFERRING JUDGMENT STRATEGIES FROM BEHAVIORAL DATA 

A. Policy Capturing and the Lens Model 

 Linear regression is by far the most prevalent method of inferring possible judgment 
strategies from behavioral data (Hammond, 1955; Dawes & Corrigan, 1974). This judgment 
analysis methodology, also called "policy capturing," has been used to successfully examine a 
diverse set of issues including clinical judgment, conflict resolution, interpersonal learning, 
expertise, and the types of feedback that promote learning (for a review see Brehmer & Brehmer, 
1988). Regression analysis, when applied to human judgment data, typically yields a linear-
additive model of judgment. This linear model is taken to represent how a performer might 
weight and combine probabilistic cues in order to render a judgment or prediction about the state 
of the world (e.g., a physician using medical history and clinical test information to diagnose a 
disease). 
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 Based on the pioneering work of the ecological psychologist Egon Brunswik (1955), an 
even more sophisticated and potentially useful representation of human judgment is possible 
when a model of the judgment environment is available (i.e., the judgment criterion can either be 
objectively measured or estimated by consensual expertise). This representation, called the Lens 
Model, is depicted in Figure 1. The Lens Model represents the judgment-environment system as 
a symmetrical structure. The task environment, or ecology, is represented in the left half of the 
figure, where the human judge is represented on the right half.  

 

Figure 1. Lens Model with Labeled Statistical Parameters [from 24] 

 The symmetry inherent in this representation allows one to measure the degree of 
adaptation or “fit” between the judge and the demands of the judgment task. Since correlational 
statistics and regression were relatively new during the time in which Brunswik outlined the 
Lens Model, there was a need, therefore, to construct a mathematical formulation of the model 
that could enable efficient data analysis and modeling. The task of creating the quantitative Lens 
Model framework was undertaken by Hammond and his colleagues (Hammond, 1955; Hursch, 
Hammond, & Hursch, 1964; Tucker, 1964).The multiple linear regression model of the judge is 
formulated as  where , wS S
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(or consistency) of the judge. A corresponding multiple regression model is given for the 
ecology – graphically depicted as the left-hand side of the cues. For the environmental model, 

 represents the predictability of the criterion. The correlation between Y  and , or G, has 
been labeled as linear knowledge (Hammond & Summers, 1972) to denote the linear 
correspondence between the judge’s decision policy and the optimal model of the criterion. The 
correlation between the two sets of residuals (  and Y ), or C, is commonly called 
unmodeled knowledge – suggesting that if the residual variance is systematic, the judge is using 
a non-linear policy effectively. The remaining term, , is the achievement of the judge as 
measured by the linear correlation between judgments and the criterion. The entire set of these 
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statistics are related by the Lens Model Equation (Hursch, Hammond, & Hursch, 1964; Tucker, 
1964), 

2(1 ) (1 )a e s er GR R C R R= + − − 2
s         (1) 

The Lens Model Equation (LME) formulates a judge’s performance (or achievement) in a task in 
terms of components that account for linear (GR ) and non-linear (e sR 2 2(1 ) (1 )e sR− −C R ) 
correlations.  

The lens model has been applied to study problems in multiple-cue probability learning, 
cognitive feedback, and policy capturing (for an overview see Hammond, 1993). 

 Recent studies of decision making using the lens model in telerobotics (Sawaragi, 
Horiguchi, & Ishizuka, 2001; Horiguchi, Sawaragi, & Akashi, 2000), identification tasks in a 
dynamic domain (Bisantz, Kirlik, Gay, Phipps, Walker, & Fisk, 2000), and adversarial decision 
making (Bisantz, Llinas, & Drury, 2001) have focused on a compensatory formulation of the 
lens model as presented in (1). This is due to the fact that the typical method of inductive 
inference in lens modeling is linear regression and correlation. Therefore, while approximations 
to noncompensatory rules have been constructed (Einhorn, 1970; Ganzach & Czaczkes, 1995), 
their direct use within the lens model equation has not been investigated. 

B. Potential Limitations of the Lens Model 

 When used to guide training and design, it is important to note that the regression 
approach for inferring judgment strategies from behavioral data makes specific assumptions 
about the cognitive processes that underlie judgment behavior. First, regression assumes that the 
judge has available a set of cues which he or she is able to measure. This measurement can either 
be binary (i.e., a cue is either absent or present), or else in terms of the magnitude of a cue value. 
In addition, the judge is assumed to use some form of cue weighting policy, which is 
correspondingly modeled by the set of weights resulting from the regression model that best fits 
the judge's behavioral data. Finally, a regression model assumes that the judge then integrates 
(the possibly differently weighted) cue values into a summary judgment. This type of weighting 
and summing judgment process, as represented by a linear-additive rule, has an important 
property: it reflects a compensatory strategy for integrating cue information. These strategies are 
compensatory in the sense that the presence of a cue with a high value, or high positive 
weighting can compensate for an absence of cues with moderate or low weighting. Similarly, 
cues with high negative weights compensate for cues with high positive weights, reflecting the 
manner in which a person might weigh, or trade off, evidence for and against a particular 
judgment. 

 A noncompensatory strategy, on the other hand, is one in which this “trading off” 
property is absent (Dawes, 1964; Einhorn, 1970; Gigerenzer & Goldstein, 1996). Einhorn (1970) 
discussed two noncompensatory judgment rules: a conjunctive rule and a disjunctive rule. A 
conjunctive rule describes a strategy in which every cue considered in the judgment must have a 
high value (or exceed some threshold) in order for the overall judgment to have high value. 
People being evaluated on their job performance often complain when it appears they are being 
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assessed by conjunctive strategy, noting that they will not receive a high evaluation or job 
promotion unless they perform at a high level on every dimension of evaluation. Note the 
noncompensatory nature of this strategy: no cue value, however highly weighted, can 
compensate for a low value on any one of the other cues. 

 A second type of noncompensatory strategy discussed by Einhorn is a disjunctive rule. A 
disjunctive strategy is one in which only one cue must have a high value, or exceed some 
threshold, in order for the overall judgment to have high value. A good example of a disjunctive 
strategy might be the evaluation of athletes in a professional (U.S.) football draft: a player might 
be highly rated if he has high value on any within the set of relevant, evaluative dimensions (e.g., 
speed, placekicking ability, punting ability, passing ability, etc.). Note that this strategy is 
noncompensatory, in the sense that a low value on a particular cue or set of cues does not detract 
from an overall high rating, given the presence of at least one cue with high value. 

 Many simple behavioral rules have a noncompensatory nature. In fact, any set of logical 
rules for making judgments that is inconsistent with a weighting-and-summing formula is likely 
to have a noncompensatory nature. In some cases, linear regression may provide an approximate 
fit to behavioral data generated by noncompensatory strategies such as these. However, 
differences may exist between the predictions of a compensatory, linear-additive model and the 
predictions of a noncompensatory, rule-based model in particular portions of the cue space (for a 
discussion and graphical depiction see Einhorn, 1970). 

To take a simple example, consider a task in which the two cues are considered by a 
judge in an exclusive-or relationship. This example can represent the judgment of a personnel 
manager responsible for hiring potential job candidates. The manager looks for someone who has 
a degree from either one college or another. Having no degree disqualifies the candidate from 
insufficient credentials while having degrees from both colleges makes the candidate 
overqualified for the job. Therefore, one (and only one) cue must have a high value for the 
resulting judgment to have high value. Fitting a linear regression to data collected from such a 
judge results in zero weighting for the predictor coefficients. This dilemma arises because the 
regression finds a line that minimizes the sum of the squared errors between this line and the 
judgment data. Although no such line exists in an exclusive-or decision policy, the regression 
model forces a “compromise.” 

 For the purposes of the present paper, it is important to note that many if not most 
noncompensatory judgment strategies make lower information search and integration demands 
than do compensatory, linear-additive strategies. The latter always require every cue to be 
assessed, weighted, and combined to yield an overall judgment. Noncompensatory strategies, on 
the other hand, typically require fewer judgment cues to be considered, weighted, and combined 
to make a judgment (for a discussion, see Gigerenzer & Goldstein, 1996). Importantly, 
psychologists studying judgment have found that two particular task conditions are important in 
prompting people to shift from elaborate and exhaustive, compensatory judgment strategies, to 
less demanding, noncompensatory strategies to perform the same judgment task. These two 
conditions are task complexity (Payne, 1976), and time stress (Payne, Bettman, & Johnson, 
1988; Wright, 1974). Increasing task complexity (e.g., number of cues, number of possible 
alternatives), and time stress both tend to increase the likelihood that people will adopt 
cognitively less demanding, noncompensatory strategies for making judgments. 
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 These findings are clearly in keeping with our previous comments about the tendency of 
performers in complex, dynamic systems to adopt rule-based, heuristic coping strategies for 
handling the information processing demands of their task environments. Additionally, heuristic 
rule-based strategies that may initially appear to be vastly oversimplified for meeting the 
demands of a particular judgment task, often yield surprisingly good and robust performance 
when compared against much more cognitively demanding compensatory strategies (Gigerenzer 
& Kurz, in press; Kirlik, Walker, Fisk, & Nagel, 1996). Given that both empirical research and 
psychological theory strongly suggest that performers in complex, dynamic environments will 
develop and use noncompensatory judgment strategies, linear regression approaches for inferring 
these strategies from behavioral data in these contexts may be inappropriate, and may lead to 
misleading accounts of the behavior of these performers. As a result, a need exists to develop a 
technique for inferring noncompensatory, rule-based judgment heuristics from behavioral data, 
which does not make the compensatory assumptions underlying linear regression. The following 
section describes a technique developed for this purpose. 

IV. INDUCTION: A NONCOMPENSATORY APPROACH 

 As observed by the 18th century philosopher David Hume, any knowledge derived from 
induction cannot, in principle, be taken as certain. While investigators have advanced the field of 
causality (Pearl, 2000), the preconditions of causal calculus make an application toward 
representative environments an unrealistic undertaking. Therefore, the purpose of induction in 
the context of this research is to generate plausible hypotheses relevant to a person’s goals – 
admittedly a weaker interpretation than Pearl’s Causal Modeling Framework (Pearl, 2000, p. 43). 
This weaker interpretation is drawn from machine learning literature (Michalski, 1983; Quinlan, 
1986; Holland, Holyoak, Nisbett, & Thagard, 1986), and serves as the basis for the 
noncompensatory policy capturing technique presented in this paper. 

In Hammond and his colleagues’ formulation of the lens model, inference from data to 
judgment policy is performed using linear regression (Hammond, Hamm, Grassia, & Pearson, 
1987) – an analogous technique is needed for the noncompensatory policy capturing. A review 
of machine learning methods (Michalski, 1983; Quinlan, 1986; DeJong, Spears, & Gordon, 
1993; Vafaie & DeJong, 1994), showed that genetic algorithms (GAs) tend to be more robust in 
concept learning applications as well as being better performers than other machine learning 
methods (Chen, Shankaranarayanan, She, & Iyer, 1998; Greene & Smith, 1993). Moreover, GAs 
have the added advantage that search is done on the encoding of the genetic strings, not the 
strings themselves (Goldberg, 1989) – as will be discussed later in this section. This search 
methodology plays an essential role in describing the degree of satisficing within a potential 
judgment strategy. 

 To infer noncompensatory judgment policies, a more specific definition of induction can 
be found in genetic algorithm literature. Holland et al. (1986) suggest that induction is a process 
of revisiting existing condition-action rule parameters and generating new rules based on 
knowledge about environmental variability (p. 22). Each rule is defined to represent a unit of 
knowledge, and collections of rules serve to represent internal states of the learning system (p. 
15). Similarly, we define induction as a process of modifying a population of rule sets 
representing candidate judgment strategies. The rule sets are generated and modified on the basis 
of empirical data representing actual instances of human judgment—which we call exemplars. In 
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the following sections, we introduce and describe the technique we have developed for inducing 
noncompensatory judgment policies from exemplars, which we call Genetics-Based Policy 
Capturing (GBPC).  

A. An Inductive Inference Model of Judgment 

To be consistent with the findings from Gigerenzer and Goldstein (1996), the 
representation of each rule set in GBPC is of disjunctive normal form (DNF). To illustrate the 
form of a rule set, consider a conjunctive rule as a condition-action rule with N statements 
where: 

 IF (statement 1) ∩ (statement 2) ∩ ... ∩ (statement N) THEN (consequence statement) 

A disjunctive rule is a condition-action rule with M statements where: 

 IF (statement I) ∪ (statement II) ∪ ... ∪ (statement M) THEN (consequence statement) 

Each rule set in the population is represented as a disjunctive rule where each individual 
statement (e.g., statement II) is a conjunctive rule. DeJong, Spears, and Gordon (1993) 
demonstrated that a genetic algorithm (GA) was able to learn condition-action rules such as those 
above based on exemplars, and with little a priori knowledge of the exemplars themselves. 
Moreover, because GBPC rule sets are in DNF, the outcomes can potentially reflect not only fast 
and frugal heuristics, but also any logical strategy consisting of AND, OR, or NOT operators 
(Mendelson, 1997). 

 GBPC maintains a population of rule sets, where each rule set consists of a disjunction of 
conjunctive rules in DNF. Each rule within the rule set is a similarity template—or schema 
(Holland, 1975; Goldberg, 1989)—and is covered by the ternary alphabet {0,1,#} where “#” is a 
match-all character. The population of rule sets is trained on exemplars representing instances of 
human judgment. The instances consist not only of the human judgments themselves, but also 
cues available at the time of judgment. As in regression-based judgment modeling, the correct 
identification of cues that actually support human judgment is crucial to the success and utility of 
the modeling technique. 

 An example of a simple judgment domain will be used to illustrate the concepts 
underlying the induction approach and to clarify implementation details. Consider the case of a 
private pilot who is flying near a small airfield. The pilot sees four aircraft during the course of 
his flight, and makes judgments of their identity on the basis of two cues – speed and altitude – 
which we assume to be perceptually measured or encoded in a binary fashion, to simplify the 
discussion. The aircraft characteristics and corresponding pilot judgments are shown in Table 1. 

Table 1. Aircraft Characteristics and Pilot Judgments for Sample Domain 

SPEED ALTITUDE JUDGMENT 
Fast Low racing aircraft 
Fast High racing aircraft 
Slow High transport aircraft 
Slow Low transport aircraft 
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This judgment data will be used to demonstrate components of the inductive inference model and 
also the binary representation of candidate rule sets. 

 Consider a binary string representation for the judgments in the sample domain. Using 
the coding scheme where 1=fast, 0=slow, 1=high, 0=low, 1=racing aircraft, and 0=transport 
aircraft, each of the judgments in Table 1 can be converted into the four exemplars shown in 
Table 2. 

Table 2. Exemplar Representation for Sample Domain Judgments 

Exemplar No. Characteristics Represented Exemplar Representation 
1 Fast, Low, racing aircraft 101 
2 Fast, High, racing aircraft 111 
3 Slow, High, transport aircraft 010 
4 Slow, Low, transport aircraft 000 

 

For example, Exemplar No. 1 represents the following operator judgment: 

 (Speed = Fast) ∩ (Altitude = Low) ∩ (Judgment = racing aircraft) 

For simplicity’s sake, the consequence statement is represented as part of the conjunctive 
statement. In addition, for the sake of illustration, consider the rule sets shown in Table 3 as the 
population used to learn the exemplars in the sample domain. Each rule set in the population 
represents data which genetic operators manipulate to form improved rule sets in future 
generations. For example, Rule Set No. 1 is represented by the following string: 1#10#0. The 
first three characters of the string (Speed=1, Altitude=#, Judgment=1) translates to the first rule: 

(Speed = Fast) ∩ (Altitude = anything) ∩ (Judgment = racing aircraft) 

Similarly, the next three characters of the string (Speed=0, Altitude=#, Judgment=0) translates to 
the second rule: 

(Speed = Slow) ∩ (Altitude = anything) ∩ (Judgment = transport aircraft) 

The rules combine in disjunctive normal form to create the following disjunctive rule set: 

 (Speed = Fast) ∩ (Altitude = anything) ∩ (Judgment = racing aircraft) 
 OR 
 (Speed = Slow) ∩ (Altitude = anything) ∩ (Judgment = transport aircraft) 

Note that Rule Set No. 1 matches all the exemplars shown in Table 3. 
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Table 3. Sample Domain Rule Sets 

Rule Set No. Rule Set Representation 
1 1#10#0 
2 1#1 
3 0#0 
4 ### 
5 101111010000 
6 11#100001000 
7 000 
8 001 
9 010 
10 011 
11 100 
12 101 
13 110 
14 111 

 

To reflect bounded rationality, GBPC uses the Pittsburgh approach (Smith, 1983; 
DeJong, Spears, & Gordon, 1993) to learn. In the Pittsburgh approach, each rule set is a 
candidate judgment strategy and each strategy has a variable number of rules – hence strategies 
with a few simpler and effective rules reflect a satisficing mode of interaction. Learning consists 
of applying genetic operators in the order outlined by Goldberg (1989). That is, each learning 
cycle, also known as a generation, consists of: 1) fitness evaluation; 2) reproduction; 3) 
crossover; and 4) mutation. The multi-objective fitness evaluation process will be discussed later. 
Reproduction is achieved through use of a roulette wheel where rule set slots are apportioned 
based on fitness (for details see Goldberg, 1989). Mutation is implemented through random 
alteration of a bit in a rule set. 

 GBPC uses the variable-length 2-point crossover operator developed by DeJong and 
Spears (1990). The operator was shown to be effective by DeJong et al. (1993). This crossover 
operator selects a pair of rule sets, and then selects two positions within each rule set to exchange 
information. The positions are constrained only by the relative distance from the beginning and 
end of each rule set. For example, given Rule Set Nos. 5 and 1 and four randomly selected 
positions (indicated by |): 

Rule Set No. 5: 10 | 11110100 | 00 

Rule Set No. 1: 1# | 10 | #0 

The resulting rule sets after applying the crossover operator are: 

Rule Set No. 5: 10 | 10 | 00 

Rule Set No. 1: 1# | 11110100 | #0 

Through 2-point crossover, information between viable rule sets within GBPC are exchanged. 
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B. Fitness Evaluation 

 A central element of GBPC is the multi-objective fitness evaluation function. As 
mentioned earlier, the search in genetic algorithms is done on the encoding of the strings, and not 
the strings themselves. Hence, the quality of decisions (i.e., the form of the encoding) can be 
captured. In the traditional linear regression approach to judgment modeling, the best fitting 
linear-additive judgment rule is determined by least-squares. In moving to a noncompensatory 
approach to judgment modeling, we must define an alternative to least-squares for measuring the 
goodness or “fitness” of a rule set. In a subsequent section of this paper, we provide some 
evidence for the plausibility of this fitness evaluation measure, by showing that the rule sets 
induced by GBPC in a laboratory CIC simulated task were consistent with human judgment data. 

We start by considering the fitness of a rule set as the ability to classify a set of exemplars 
in a manner consistent with satisficing behavior within bounded rationality. Therefore, a rule set 
should not only match a set of exemplars, but it should also resemble the types of 
noncompensatory judgment strategies performers typically use as heuristics in these tasks. This 
is done in GBPC through the use of a multi-objective function that evaluates fitness along three 
dimensions: completeness, specificity, and parsimony. The completeness dimension is based on 
work by DeJong et al. (1993), and is a measure of how well a rule set matches the entire set of 
exemplars (i.e., human judgments in a data set). The specificity dimension was first suggested by 
Holland et al. (1986), and is a measure of how specific a rule set is with respect to the number of 
wild cards it contains. Therefore, rule sets with less match-all (i.e., “#”) characters are classified 
as more specific. The parsimony dimension is a measure of the goodness of a rule set in terms of 
the necessity of each rule. Hence, in a parsimonious rule set, there are no unnecessary rules. The 
ideal rule set, therefore, will match all operator judgments, will be maximally specific, and 
maximally parsimonious. The mathematical formulation of each dimension will be discussed in 
the following section. 

C. Mathematical Development of Fitness Dimensions 

Definition 1.1: An exemplar matrix, E, consisting of a set of binary variable vectors, 
called exemplars, whose range is the set {0,1}. Each exemplar within E is represented as ei•, for i 
= 1, ..., m, where m is the total number of exemplars. Each binary variable within ei• is 
represented as ei,j for j = 1, ..., n, where n is exemplar length. Thus, E is a m by n matrix in the 
form: 

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

n

n

m m m n

e e e
e e e

E

e e e

 
 
=

 
  

L

L

M M M

L




         (2) 

Definition 1.2: A rule set matrix is a matrix, S, consisting of a set of ternary variable 
vectors, called a rule set, whose range is the set {0,1,#}. Each rule within S is represented as sk• 
for k = 1, ..., p, where p is the number of rules in the rule set. Each ternary variable within sk• is 
represented as sk,j, for j = 1, ..., n where n is the rule length. 

12 



Therefore, S is a p by n matrix in the form: 

1,1 1,2 1,
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Matching an exemplar with a rule set requires an indicator function. Therefore, given that x ∈ E 
and y ∈ S, an indicator function is defined as IA where A = {x, #}, so that, 

1
( )

0A

if y A
I y

if y A
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        (4) 

The results of applying IA to compare a rule set, S, with the ith exemplar ei•, is shown as a 
“matching matrix”, Mi, for exemplar i where 

,1, ,2 , , ,

,1, ,2 , , ,

,1, ,2 , , ,

{ #} 1,1 { #} 1,2 { #} 1,

{ #} 2,1 { #} 2,2 { #} 2,

{ #} ,1 { #} ,2 { #} ,

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

i i i n

i i i n

i i i n

e e e

e e e
i

e p e p e p n

I s I s I s

I s I s I s
M

I s I s I s

 
 
 =  
 
  

L

L

M M M

L

     (5) 

Each row of the matching matrix represents how well an exemplar ei• matches a particular rule, 
sk•, within the rule set. To simplify, rewrite Mi so that each element is represented as a binary 
variable, mi,k,j, such that,  

,, , { ,#} ,(
i ji k j e k jm I s=          (6) 

Before elements of the matching matrix can be algebraically manipulated, one first needs to 
show that the matrix is a lattice under conjunction and disjunction. 

Theorem 1.1: A matching matrix, Mi, is a boolean lattice under disjunction, ∪, and 
conjunction, ∩. 

Proof: First, it is seen that Mi is ordered by the relation ≤ so that, for each pair a,b of 
binary variables in Mi, a R b ⇔ a ≤ b. It follows that Mi is an ordered set. Second, the supremum 
and infimum of each pair of binary variables can be readily determined as either 0 or 1. Note that 
the supremum and infimum are, effectively, the disjunctive and conjunctive operators, 
respectively. Thus, the proof is complete.  

Given a lattice, a where a = {a1, a2 ,…, an}, the disjunct, a1 ∪ a2 ∪ ••• ∪ an, and the 

conjunct, a1 ∩ a2 ∩ ••• ∩ an, are denoted by U and , respectively. Thus, by applying the 
n

i
ia

1=
I

n

i
ia

1=
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disjunct operator on elements of the matching matrix, we define that an exemplar is matched to a 
rule if and only if: 

, ,
1

1
n

i k j
j

m
=

=I           (7) 

That is, for any exemplar i, and any rule k, both having length n, a vector-wise match exists if 
and only if each exemplar value matches the corresponding rule value. Thus, a matching 
function, f, between a rule set, S, and an exemplar ei•, can be formulated as, 

, ,
1 1

( )
p n

i
k j

f M m
= =

 
= 

 
U I i k j          (8) 

For p rules in the rule set, each with length n. A match, therefore, between an exemplar ei• and a 
rule set exists if and only if f(Mi) = 1. 

 Definition 1.3: A rule set is said to be complete if it is able to match all the exemplars in 
the exemplar set. A scaled function to indicate rule set completeness, c, follows: 

1
1 2
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( , ,..., )

r

i
i

r

f M
c M M M

r
==
∑

        (9) 

For r exemplars. Thus, 0 ≤ c ≤ 1. Completeness values for all rule sets shown in Table 3 are 
listed in Table 4. 

Table 4. Sample Domain Rule Set Completeness Values. Exemplars (see 
Table 2 consist of {101,111,010,000} 

Rule Set No. Rule Set String c
1 1#10#0 1 
2 1#1 0.5 
3 0#0 0.5 
4 ### 1 
5 101111010000 1 
6 11#100001000 0.5 
7 000 0.25 
8 001 0 
9 010 0.25 
10 011 0 
11 100 0 
12 101 0.25 
13 110 0 
14 111 0.25 

 

Therefore, c discriminates between rule sets not matching any exemplars (Rule Set Nos. 
8, 10, 11, and 13), rule sets matching some exemplars (Rule Set Nos. 2, 3, 6, 7, 9, 12, and 14), 
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and rule sets matching all the exemplars (Rule Set Nos. 1, 4, and 5). Although three rule sets are 
able to match all exemplars, the usefulness of each rule set as a judgment strategy varies greatly. 
Rule Set No. 4 represents an over-generalized strategy (i.e., if anything do anything). Rule Set 
No. 5 represents a strategy that relies on memorization of all possible outcomes, which may be 
theoretically possible, though practically prohibitive in a complex, dynamic environment. Rule 
set No. 1 represents a simplification strategy consistent with the findings in (Klein, 1999; 
Rasmussen, 1983; Rouse, 1983; Kirlik, Walker, Fisk, & Nagel, 1996). 

 Thus, although the completeness function is able to measure the degree to which a rule 
set matches an exemplar set, a well-matched rule set does not necessarily represent a cognitively 
plausible judgment strategy. Two other fitness dimensions will now be introduced in an attempt 
to improve the capability of the fitness function to better achieve psychological plausibility. The 
specificity dimension addresses the task of eliminating rules within a rule set that are over-
generalized (e.g. Rule Set No. 4). 

 Definition 1.4: A rule set is fully specified if there are no match-all characters in the rule 
set. A scaled function to show rule specificity, t, follows: 

{0,1} ,
1 1

( )
( )

( * )

p n

k j
k j

I s
t S

p n
= ==
∑∑

        (10) 

For p rules of length n each. Thus, 0 ≤ t ≤ 1. Specificity values for all rule sets shown in Table 3 
are listed in Table 5. 

Table 5. Sample Domain Rule Set Specificity Values 

Rule Set No. Rule Set String t c * t
1 1#10#0 0.6667 0.6667 
2 1#1 0.6667 0.3334 
3 0#0 0.6667 0.3334 
4 ### 0 0 
5 101111010000 1 1 
6 11#100001000 0.9167 0.4584 
7 000 1 0.25 
8 001 1 0 
9 010 1 0.25 
10 011 1 0 
11 100 1 0 
12 101 1 0.25 
13 110 1 0 
14 111 1 0.25 

 

 As a complement dimension to c, t discriminates between rule sets not containing match-
all characters (Rule Set Nos. 5, 7-14), and rules sets that do (Rule Set Nos. 1-4, 6). Table 5 also 
shows a combined completeness/specificity value (in the form of c*t). An examination of c*t 
shows that the fitness of the over-generalized rule (Rule Set No. 4) has been reduced in value. 
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Furthermore, the two highest c*t rule sets (Nos. 1 and 5) continue to support possible decision 
strategies as measured by completeness. However, Rule Set No. 6 presents another difficulty that 
must be overcome. Although half of the rules in Rule Set No. 6 match exemplars in Table 2, the 
other rules do not. Nevertheless, the two useless rules contribute to the overall specificity value 
of the rule set. Therefore, the final fitness dimension, parsimony, will now be introduced to 
eliminate useless rules from the rule set. 

 Definition 1.5: A rule set is said to be parsimonious if each rule within the rule set 
matches at least one exemplar in the exemplar set. A scaled function to indicate rule set 
parsimony, p, follows: 

, ,
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i k j
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p M M M
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       (11) 

For r exemplars and q rules of length n each. Thus, 0 ≤ p ≤ 1. Parsimony values for all rule sets 
shown in Table 3 are listed in Table 6. 

Table 6. Sample Domain Rule Set Parsimony Values 

Rule Set No. Rule Set String p c * t * p
1 1#10#0 1 0.6667 
2 1#1 1 0.33335 
3 0#0 1 0.33335 
4 ### 1 0 
5 101111010000 1 1 
6 11#100001000 0.5 0.22918 
7 000 1 0.25 
8 001 0 0 
9 010 1 0.25 
10 011 0 0 
11 100 0 0 
12 101 1 0.25 
13 110 0 0 
14 111 1 0.25 

 

The third fitness dimension, p, provides a means of discriminating between rule sets that 
are wholly useful (i.e., each rule matches at least one exemplar) and those that are not. Table 6 
also shows a combined completeness/specificity/specificity value (in the form of c*t*p). Notice 
that the fitness value of Rule Set No. 6 has been reduced to correspond to the usefulness of each 
rule within the rule set. Thus, an examination of Table 6 shows that the two highest c*t*p rule 
sets (Nos. 1 and 5) represent viable decision strategies to judge the identity of an aircraft based 
on its speed or altitude attributes as outlined in the sample domain.  

Interestingly, the two rule sets (Nos. 1 and 5) represent disparate decision strategies. Rule 
Set No. 1 represents a simplification policy that identifies aircraft based strictly on speed while 
No. 5 generates a comprehensive set of specific rules to describe each exemplar exactly. Because 
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the multi-objective fitness function in GBPC does not prescribe the number of rules to generate, 
the maximal number of rules employed by an operator should be empirically determined. 
Regardless, GBPC provides candidate rule sets that represent plausible strategies based on 
concepts of completeness, parsimony, and specificity. A global function using all three fitness 
dimensions will now be discussed. 

Definition 1.6: A global fitness function, g, combines all three fitness dimensions, and is 
defined as,  

2 2 2* *g c t p=          (12) 

Thus, g provides a non-linear differential reward system for rule sets within the population. The 
global maximum of g=1 is achieved when all exemplars are fully contained in a rule set (e.g., 
Rule Set No. 5). While g was initially selected for its simplicity, further studies are underway to 
explore alternative formulations (Rothrock & Repperger, in review). For the present purposes, it 
is important to note that the particular formulation for g used here, in which the values of each of 
the contributing terms are squared prior to summation, was selected for computational rather 
than psychological reasons. This choice has implications for how to fairly compare the scalar 
measure of noncompensatory model fitness as represented by g and analogous scalar measures of 
regression model fitness, such as multiple correlation, as will be seen in the following section. 
We next describe an empirical evaluation of GBPC for inferring noncompensatory judgment 
rules in a dynamic task. 

V. EMPIRICAL EVALUATION 

 The inductive inference model was applied to human judgment data collected in a 
dynamic laboratory simulation of a U.S. Navy combat information center (CIC). Detailed 
information on the simulation and experimentation can be found in (Rothrock, 1995; Hodge, 
1997). The simulation required participants to perform the tasks of an anti-air warfare 
coordinator (AAWC), responsible for making judgments about the identity of initially unknown 
vehicles (or “tracks”) entering his geographic area of responsibility. GBPC was used to infer the 
possible heuristic strategies used by AAWC participants to make these track identification 
judgments. 

 Participants consisted of university students who were initially briefed on the role of an 
AAWC operator, functions of the computer interface, and geopolitical context of the simulation. 
Participants were given maps and profiles of friendly and hostile aircraft in the area to study and, 
later, during the scenario runs. Subjects were also briefed on the relative diagnosticity of each 
type of cue. For example, subjects were told that visual identification is veridical. They were 
then trained on 15 30-minute scenarios of comparable difficulty. In the training scenarios, post-
scenario feedback was provided to each participant in terms of correct assessments and incorrect 
actions. Participants then ran three additional 30-minute scenarios during which data for GBPC 
was collected. The number of identification judgments per scenario ranged from 15-34. 

 Participants were provided with a radar display and a suite of controls for obtaining 
additional information about tracks in the vicinity of their ship. The following types of 
information, or judgment cues, were available: a) Identification Friend or Foe (IFF) status; b) 
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electronic sensor emissions (friendly or hostile sensor onboard); c) visual identification by 
combat air patrol (CAP); d) range; e) altitude; f) speed; g) course; h) bearing; i) location of 
civilian airports and air corridors; and j) legitimate commercial aircraft flight numbers; and k) 
designation of hostile and friendly countries. The participant’s goal was to use the available 
information to identify initially unknown tracks as either friendly, assumed friendly, hostile, or 
assumed hostile. For the simulation, we intentionally made some of this information more 
diagnostic than others. For example, visual identifications provided by CAP were perfectly 
diagnostic, and electronic sensor emissions were highly diagnostic. IFF information, however, 
was much less reliable. Our experimental purposes did not require that we mimic the actual, 
relative reliability of these information sources in the operational naval environment, as we were 
not attempting to actually train naval personnel using this simulation. Naturally, however, a 
training simulation should mimic the reliability of information sources in the target context. 

A. Modeling Approach 

 To evaluate GBPC, both the regression-based Lens Model technique and the GBPC 
technique were fit to empirical data from the highest (A) and lowest (B) performing participants 
in the track identification task in a final experimental session (i.e., after judgment strategies had 
presumably stabilized). Participant A judged the identity of 20 out of 24 possible tracks, made no 
errors, and did not judge any track multiple times. Participant B judged only 14 out of the 24 
tracks, made four errors, and judged five tracks twice. In every instance where a track was 
judged twice, the second judgment was made when visual identification became available. The 
goal in analyzing the behavior of these two participants using both modeling approaches was to 
compare the results of the two methods to see if they revealed similarities or differences in 
representing judgment strategies as well as in explaining the performance differences between 
the participants. The bottom line in this investigation was to try to determine why participant A 
performed this dynamic judgment task more successfully than participant B, and also to exploit 
the opportunity provided by a common data set to compare the GBPC approach with the much 
more established Lens Modeling approach. 

 Due to the large number of information sources available in the laboratory task, we first 
divided these sources into two categories: active and passive. Active information sources 
required the operator to make queries about a track. Active sources included queries of IFF, 
electronic sensor emissions, and requests for visual identifications of a track, obtained by 
sending CAP resources to fly to a track's location and make a report, if possible, to the AAWC. 
All other information sources were considered to be passive, since they did not have to be 
actively requested, but were instead continuously available from the radar display (e.g., track 
location, bearing, speed, altitude, etc.). The first stage of modeling focused solely on the 
performers’ use of active information. We parsed the data in this fashion due to the limited 
number of human judgments available (a maximum of 24), which meant that we would have to 
focus on a relatively small set of cues or information sources in order to give us the chance to 
obtain reliable fits for either GBPC and Lens Modeling. For GBPC, there is a potential for 
combinatorial explosion when representing the laboratory task in the binary format required by 
GBPC. For Lens Modeling, there is a need for a relatively high ratio of the number of judgments 
to the number of cues in order to construct a reliable model.  
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 We must note that by restricting the cue data set in this way we did not expect to create 
complete accounts of our performers’ judgment strategies. However, focusing on just the set of 
active information not only enabled the comparison of GBPC and Lens Model results, but also 
helped address the question of whether the difference between the high and low scoring 
participants could have been due to their policies for actively searching for judgment cues, and 
how they may have used these cues. As will be described in a following section, however, we did 
conduct a second stage of GBPC based on the use of both active and passive sources of 
information. While that second modeling effort is not the primary focus of this article, selected 
findings from that second, more comprehensive GBPC analysis will be presented – in particular, 
those that bear on diagnosing the possible task-simplification heuristics underlying participant 
B’s erroneous judgments. A complete account of both stages of GBPC is provided in (Rothrock, 
1995). 

B. Coding the Active Information Data Set to Support GBPC and Lens Model Analysis 

 For modeling the use of active information, cues and operator judgments were encoded in 
GBPC as a 10-bit string. The meaning of each string position is shown in Table 7. Note that the 
first six bits represent actions taken to seek judgment cues (and in some cases, the information 
gained as a result of these actions), while the last 4 bits represent the four possible AAWC 
identification judgments themselves. Note that representation provided in Table 7 is hardly the 
most efficient binary coding from an information theoretic perspective. However, alternative, 
more efficient codings may limit the representational flexibility of the model, and thus limit its 
ability to induce rule sets covering the entire range of exemplars in a data set. 

Table 7. AAWC String Bit Position and Representation 

Bit Representation 1 0 
#1 IFF queried yes no 
#2 Friendly emitter response yes no 
#3 Hostile emitter response yes no 
#4 Negative emitter response yes no 
#5 Friendly visual sighting yes no 
#6 Hostile visual sighting yes no 
#7 Friendly AAWC judgment yes no 
#8 Assumed friendly AAWC judgment yes no 
#9 Assumed hostile AAWC judgment yes no 
#10 Hostile AAWC judgment yes no 

 

 To support Lens Modeling of these same data, we used a coding approach very similar to 
that presented in Table 7, but modified in such a way as to be consistent with the requirements of 
linear regression modeling, and similar to the manner in which we coded cue and judgment data 
in our previous Lens Model analysis of a different data set collected in the same laboratory task 
(Bisantz, Kirlik, Gay, Phipps, Walker, & Fisk, 2000). In particular, friendly tracks (both 
judgments and criterion) were coded with the value of 1.0, and hostile tracks with the value of –
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1.0. IFF, emission, and sighting cues were coded as either 1.0, -1.0, or 0.0, depending on whether 
the associated cue provided evidence of a friendly track, a hostile track, or neutral (or no) 
evidence on track identity, respectively. It should be noted that the data set modeled in this 
paper, while distinct from that used in the Bisantz et al. (2000) paper, only differed in the fact 
that it reflected behavior from a different set of performers collected at a different time. Both 
data sets came from control groups from a series of experiments evaluating a variety of training 
interventions for the CIC context. 

C. Lens Model Analysis of the Use of Active Information 

 Recall that participant A made 20 identification judgments, all correct, while participant 
B made 19 identification judgments, with four errors. Lens Models of both participants A’s and 
B’s strategies for the use of active information were reliably created (for A, R2 = 0.851, R2(adj) = 
0.834, F (2,19) = 48.74, p < 0.001; for B, R2 = 0.602, R2(adj) = 0.522, F (2,19) = 7.57, p < 0.01). 
In keeping with the manner in which Lens Model results were graphically presented in the 
previous study in the same task (see Fig. 8 in Bisantz et al., 2000), Figure 2 provides a 
comparison of performers A and B in terms of the Lens Model measures of cognitive control (or 
consistency), environmental predictability, achievement, linear knowledge, and unmodeled 
knowledge. 

 There are many notable findings in Figure 2. First, consider the findings regarding 
participant A. Naturally, Lens Modeling revealed a perfect (unity) acheivement measure for A, 
as he made no judgment errors. The best fitting model for A indicated heavy reliance on both the 
sensor emission cue (beta = 1.00, p < .001) and the visual identification cue (beta = .940, p < 
.01). Since A never queried IFF, there was no variance in this cue value so it was therefore not 
included in A’s model. In addition, A demonstrated a degree of cognitive control (.922) that was 
exactly equal to environmental predictability (.922), a necessary result because of the fact that 
since A scored perfectly, his judgment model and the environmental regression models were 
identical. In addition, A demonstrated a perfect (unity) degree of linear knowlede for exactly the 
same reason (the beta weights in both models were identical). All these findings would lead one 
to suspect that the compensatory judgement model for A provided a very good description of his 
performance, except for the striking value of C (also unity), indicating a highly significant degree 
of unmodeled knowledge profitably used by this participant. In summary, the general 
interpretation of A’s behavior invited by this Lens Model analysis is that he was well adapted to 
weighting and combining the linear cue-criterion relationships, and used some additional 
knowledge about some amount additional non-linear relations between these cues and the 
criterion to overcome the less-than-perfect linear predictability of his environment, and his less 
than perfect cognitive control in executing his judgment strategy. 

 In contrast, now consider the interpretation of participant B’s performance based on these 
Lens Model results. B’s achievement of .567 represents a considerably lower degree of judgment 
performance, due to errors committed. The best fitting model for B indicated heavy reliance on 
both the sensor emission cue (beta = 0.958, p < .01) and the visual identification cue (beta = 
1.266, p < .05). Although there was variance in the IFF cue for B due to his occasional use of 
IFF queries, no reliable linear weighting of this cue was found, so it was not included in the final 
model of participant B. The explanation provided by these results suggests that a lack of 
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complete cognitive control (.783), environmental predictability (.776), and linear knowledge 
(.894) all contributed to B’s relatively modest achievement in this task. 
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Figure 2. Lens Model Results for High & Low Scoring Participants Using Active 
Information 

 

 Figure 2 also supports a comparative assessment of A’s and B’s judgment strategies. 
While A displayed perfect use of unmodeled (presumably, non-linear) knowledge, B displayed 
the use of no such knowledge. We note that a large difference in reliance on unmodeled 
knowledge was also found in a Lens Model analysis of another data set collected in the same 
experimental context (see Fig. 8 in Bisantz et al., 2000), but those authors did not offer an 
explanation of why their high and low performers may have differed in this respect. Finally, note 
the different values for environmental predictability for A and B. This analysis suggests that 
although A and B were performing the “same” task, by using a more effective strategy for 
information search (recall these models were created on the basis of actively sought 
information), A was able to essentially perform in a more predictable, proximal environment 
than participant B. This finding is important, as it suggests that one component of judgment skill 
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in dynamic, interactive tasks is the use an adaptive strategy for actively searching for diagnostic 
information. 

 In summary, it is clear that a Lens Model analysis of these two participants has provided 
some useful information, although, especially in the case of participant A, his perfect use of 
unmodeled knowledge should raise some suspicions about whether a fully compensatory 
description of his judgment strategy is faithful to the strategy he actually used. 

D. GBPC Analysis of the Use of Active Information 

 When GBPC was applied to data from performers A and B and allowed to learn, GBPC 
produced a rule set for A with an overall fitness value, or g = 0.5625, and a rule set for B with g 
= 0.3600. The lack of fit (the difference between g and unity) for both operator models was due 
solely to the specificity dimension by which fitness was evaluated. GBPC inferred rule sets for 
performers A and B that were both fully complete (i.e., covered all judgment instances), and also 
fully parsimonious (i.e., contained no unnecessary rules). The rule set for A achieved a 
specificity value of 0.7500 (and thus an overall fitness g value of {1.00002 * 1.00002 * 0.75002} 
= 0.5625), and a rule set for B with a specificity value of 0.600 (and thus a g value of {1.00002 * 
1.00002 * 0.60002} = 0.3600). A lack of specificity suggests that both operators used abstract 
heuristics to generalize their strategies (that is, that some of the rules in their final rule sets 
referred only to a subset of the three (IFF, sensor, and visual identification) cues. Finally, in 
regard to the numerical measures of fit obtained by GBPC, recall that the equation whereby each 
of the three contributing fitness measures are squared prior to summation was done purely for 
mathematical convenience, and not for any psychological reason. Thus, it may be just as 
plausible to assess the GBPC fits without squaring, resulting in a fit for participant A of .750 and 
a fit for participant B of .600). 

 Given that this first stage of modeling inferred judgment strategies on the basis of a 
highly restricted set of cues (IFF, sensor emissions, and visual identifications), we were surprised 
to achieve these high (unity) fitness values on the completeness fitness dimension. Recall that A 
made a total of 20 judgments, and GBPC found a disjunctive normal form (DNF) representation 
of this operator's strategy as a disjunction of seven conjunctive rules, with one of these rules 
covering only one judgment instance. The remaining six rules in this rule set covered between 
two and eight instances. Operator B made a total of 19 judgments, and GBPC found a DNF 
representation of this operator's strategy as a disjunctive collection of 11 rules, with one of these 
rules covering only one judgment instance. The remaining 10 rules for Operator B covered 
between two and eight instances. 

 Analysis of the rule sets with maximum g values (i.e., the winning rule sets) revealed 
some interesting findings regarding the use of active information. Operator A's winning rule set 
indicated a reliance on querying electronic sensor emissions and visual identifications to make 
track identification judgments. This finding is consistent with the Lens Model analysis, although 
that analysis implies a compensatory rather than a noncompensatory reliance on these cues. For 
example, the following two rules from the winning rule set, which covered eight and nine of A's 
judgments respectively, indicate reliance on these highly diagnostic sources of information to 
make "hostile" and "assumed friendly" judgments. 
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(friendly emitter response = no) ∩ (emitter response = not negative) ∩ (AAWC judgment = hostile) 
OR 
(emitter response = not negative) ∩ (hostile visual ID = no) ∩ (AAWC judgment = assumed friendly) 

Recall that GBPC represents rule sets as disjunctions of conjunctive rules. The first conjunctive 
rule above states that if a sensor emission is queried, and the response is neither friendly nor 
negative, then judge the associated track to be hostile. For all the tracks in the experimental task, 
correct sensor assessment yields correct identifications. Hence, the rule is diagnostic of the true 
identity of the tracks. 

 Now consider the second conjunctive rule above. This rule states that if a sensor is 
queried, and some emission (either friendly or hostile) is detected, and CAP resources do not 
provide a visual identification of the track as hostile, then assume the track to be friendly. This 
rule has two interpretations. In the first case, assume that the sensor emission is friendly. In this 
case, the track should be judged as "assumed friendly” given that visual identification provided 
by CAP does not indicate otherwise (i.e., does not indicate that the track is hostile). This rule 
thus represents a reliance on highly diagnostic emission information unless the (even more 
diagnostic) visual identification conflicts with emission information, and is thus fully consistent 
with the relative diagnosticity of these two cues in this task environment. 

 Now, consider the second interpretation of this rule, namely, that the emission response is 
hostile. In this case, the track should instead be assumed to be friendly if CAP provides a visual 
identification to override the judgment that would be made on the emission report alone (e.g., the 
first of the two disjunctive rules above). This second interpretation of this rule can also be seen 
as a refinement of the first rule, as it indicates that information gained by visual identification, if 
available, should override any judgments made solely on the basis of electronic sensor 
emissions. In the experimental task, sensor emissions were highly diagnostic, as mentioned 
above, but visual identifications were 100% diagnostic. Thus Operator A's second rule reflects an 
adaptive refinement of his first rule to those cases where CAP resources provide conflicting 
visual identification information. As compared to the Lens Model analysis that indicated that A 
made highly significant (but unexplained) use of unmodeled knowledge, we believe that this 
noncompensatory, rule-based description of A’s judgment strategy may be the more plausible 
one, although this restricted data set is clearly insufficient to establish this conclusion with 
certainty. 

 Finally, the rule set for A also indicated a generally adaptive lack of reliance on relatively 
unreliable IFF information in making judgments: the only two rules in his rule set that matched 
judgments where IFF had been queried also relied upon sensor information, visual identification 
information, or both sources, to complement any information obtained from IFF. 

 When GBPC was applied to participant B’s use of active information, on the other hand, 
it was much more difficult to infer a coherent and efficient judgment strategy on the basis of 
active information alone. At a general level, however, B did not appear to make effective use of 
the most highly diagnostic types of active information: electronic sensor emissions and visual 
identifications. In fact, one rule, covering six instances of B's judgments, indicated a reliance 
solely on unreliable IFF information, with no accompanying reliance on sensor or visual 
information to supplement IFF as an information source: 
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(IFF query status = anything) ∩ (AAWC judgment = assumed friendly) 

We emphasize, however, that GBPC was less successful in inferring an efficient judgment 
strategy for participant B than for A, solely on the basis of their use of active information 
sources. Other than a general over-reliance on relatively unreliable IFF information, the inferred 
strategy for B was not particularly enlightening as to the possible reasons underlying his four 
judgment errors. Once again, these results are consistent with the Lens Model analysis of B, as, 
in direct opposition to A, B’s demonstrated lack of any reliance on linearly unmodeled 
knowledge suggests that moving toward a noncompensatory formulation of B’s strategy would 
likely have limited success. 

E. Modeling the Use of Passive Information: Inferring Error Tendencies 

 To gain additional insight into the differences between the judgment strategies that may 
have been used by performers A and B, a second stage of GBPC was performed that also 
included the seven dimensions of passive information discussed previously. This was a 
significantly more elaborate and computationally-intensive exercise, due to the need to represent 
the seven passive information sources in a binary format that was hopefully consistent with how 
the operators perceived and encoded information obtained from the radar display. We eventually 
settled on a 40-bit representation of the task environment for this second stage of modeling. 

 The first 8 bits in the 40-hit string represented the 8 different radar ranges (e.g., 8 nm, 16 
nm, etc.) which could be selected by the operator. The ninth bit represented whether a track was 
emitting electronic sensor information. Bits 10 through 13 represented a track's altitude, put into 
equivalence classes that were somewhat relevant to a track's identity in this environment (e.g., 
less than 5000 feet, between 5000 and 18,000 feet, etc.). Bits 14 through 17 represented a track's 
speed in a similar format. Bits 18 through 21 represented a track's course as one of four compass 
quadrants. Bits 22 through 25 similarly represented a track’s bearing. Bits 26 through 33 
represented a track's range as a member of one of eight, task-relevant, equivalence classes. Bits 
34, 35, and 36 represented whether IFF, electronic sensor emission, and visual identification 
information for a track had been sought by the operator. Finally, the last four bits represented the 
operator's judgment, in the same manner as used in the first modeling stage. Because of the large 
numbers of information sources used in this stage of modeling, statistical power was lacking to 
conduct analogous Lens Model analyses of these data for comparison purposes. 

 A detailed discussion of the results of this second stage of GBPC modeling can be found 
in (Rothrock, 1995). Here, the focus is solely on an analysis of the differences between the ways 
in which A and B made judgments about the identity of three particular tracks. Each of these 
three tracks was a hostile helicopter, correctly identified as hostile by A, but incorrectly 
identified by B as "assumed friendly." These three misidentifications accounted for three of B's 
four judgment errors. Based on GBPC results from this second modeling stage, rule sets were 
found suggesting that A correctly identified all three of these helicopters by sending CAP 
resources to obtain visual identifications. On the other hand, the rules which covered B's 
judgments about these helicopters indicated that no active information sources were sought for 
two of these helicopters, and that the third was queried only by relatively unreliable IFF. 
Additionally, the rule covering these three helicopter judgments for B contained the following 
information: 

24 



(altitude not {18,000 < a < 40,000}) ∩ (altitude not {a > 40,000} ∩ (speed < 200) ∩ 
(range not {r < 10}) ∩ (range not {40 < r < 50}) ∩ (range not {r > 150}) ∩ (assume friendly) 

 Of particular interest here are the track conditions described in this rule (speed less than 
200 kts, altitude < 18,000 feet). This information was available from the radar display. These 
track conditions generally reflected the radar signature of commercial airliners taking off from 
airports in our simulation. All tracks in our scenarios with this signature were indeed airliners 
except for the three hostile helicopters misidentified by B. Recall that A did not solely use radar 
information to identify these tracks as hostile, relying instead upon actively sought, visual 
identification. Although one cannot be sure that the rule described above actually accounted for 
B's misidentification of these helicopters as "assumed friendly," this case does provide an 
example suggesting how inferential modeling might provide hypotheses about the nature of the 
task-simplification heuristics operators might employ, and how information gained from 
inferential modeling might provide an important source of feedback for training. 

VI. CONCLUSIONS 

A. Summary and Implications 

 Performers in time-stressed, information-rich environments develop heuristic, task-
simplification strategies for coping with the time-pressure and often severe information 
processing demands of judgment and decision making tasks. Judgment strategies in these 
environments may have a noncompensatory nature, which may be adaptive to the time-stressed 
nature of these tasks, since such heuristics typically make lower demands for information search 
and integration than do corresponding, linear-additive, compensatory strategies. As a result, 
linear regression may be inappropriate for inferring the judgment strategies used by operators in 
time-stressed environments, assuming as it does that judgment strategies can be usefully 
described by compensatory, linear-additive rules. 

 An alternative approach for inferring judgment strategies from behavioral data has been 
presented that does not rely on the compensatory assumptions underlying linear regression. The 
technique, Genetics-Based Policy Capturing (GBPC), infers noncompensatory judgment 
strategies under the assumption that these strategies can be described as a disjunctive collection 
of conjunctive rules. The fitness measure embodied in GBPC evaluates candidate rule sets on 
three dimensions: a) completeness (the inferred rule base is consistent with all operator 
judgments); b) specificity (the rule base is maximally concrete); and c) parsimony (the rule base 
contains no unnecessary rules). 

The inferential approach was illustrated using behavioral data from the highest and 
lowest performing operators of a laboratory simulation of a combat information center (CIC) 
task. In this application, the GBPC inferred individually valid, yet contrasting rule bases for 
these two operators. Additionally, the two inferred rule bases were consistent with these 
operators' patterns of both correct and incorrect judgments. Also, it was shown that the GBPC 
results provided a useful complement to a Lens Model representation of the same data. In some 
cases, we suggest that the GBPC results may have even provided a superior representation of 
judgment, for example, in explaining the highly significant reliance on (linearly) unmodeled 
knowledge demonstrated by the highest scoring participant. 
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GBPC holds promise for the design of advanced training technologies that use individual 
performance histories to target feedback toward eliminating any potential misconceptions or 
oversimplifications a trainee’s behavior might reflect. One can imagine using both Lens Model 
analysis and GBPC analysis to capture trainee data in real time, infer judgment strategies as 
enough data on trainee behavior became available, and then make these strategies explicit to a 
human trainer or the trainee himself or herself as a form of feedback augmentation. As a 
knowledge engineering tool, the technique could be used to identify the judgment strategies used 
by expert performers in dynamic, time-stressed environments, when provided with a data set of 
expert judgments and the task conditions in which these judgments were made.  

B. Towards a Noncompensatory Formulation of the Lens Model 

Thus far, GBPC has been developed solely as a policy capturing technique (Cooksey, 
1996, p. 57) to characterize a performer’s cue utilization strategy. While the authors are 
encouraged by our results to date, we realize that merely fitting a sample data set does not 
validate a model. One of our future goals, therefore, is to cross-validate (Kohavi, 1995) the 
model through additional experimentation to evaluate the usefulness of the model in the context 
of a broader data set, and the use of held-out data sets that were not used in the model fitting 
process. Most importantly, however, we are also currently investigating the use of the GBPC to 
describe not only the human performer, but the task environment as well, in the spirit of the 
compensatory formulation of the Lens Model. 

Thus, the next step in our research is to apply the GBPC technique to modeling ecologies 
with various types of cue-criterion or means-ends structure, and compare the resulting models 
with regression-based, compensatory models of the same environments. As discussed in Part III 
of this paper, it is well known that in specified conditions linear-additive models can effectively 
mimic the behavior of truly noncompensatory strategies to various degrees. With both 
compensatory and noncompensatory inferential techniques available for describing ecological 
structure, we should be in a much better position to analyze, describe, compare, and contrast the 
conditions under which both rule-based strategies as well as linear-additive strategies both 
succeed and fail as a function of the cue-criterion or means-ends structure of the task ecology. 
Naturally, we expect to accompany this analytical exercise with an experimental program using 
human judges to gain an understanding of the degree to which humans are sensitive to these 
factors and tradeoffs. 

Ultimately, our overall goal is to provide a set of techniques for analyzing and assessing 
the adaptivity of rule-based judgment strategies with the same level of precision and formality 
that current versions of the Lens Model provide to support the analysis of linear-additive 
strategies. Since the Lens Model Equation (LME) is basically a decomposition of the correlation 
coefficient measuring task achievement, the same equation can be used to evaluate the output of 
combined GBPC modeling of both the human and environmental components of a judgment 
system. Such a combined model could be termed a Genetics Based Lens Model, or GBLM.  

With such a model in hand, it promises to be quite interesting to model human 
performance in both linear-additive ecologies and noncompensatory ecologies with both 
regression-based and GBLM techniques, and decompose the resulting correlations using the 
LME. We expect this to prove to be a valuable exercise, as it may require a reinterpretation of 
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the traditional psychological meanings of the LME parameters. For example, when linear 
regression is used as the basis for traditional Lens Modeling, the second term in the LME 
provides a measure of non-linear, noncompensatory, or otherwise “unmodeled knowledge.” In 
contrast, if GBLM were to be applied to the same data set, it may be that much of the correlation 
between judgments and the criterion described as non-linear or unmodeled knowledge by 
traditional methods may be transformed into modeled knowledge, and thus reflected in the first, 
rather than the second, term in the LME. Now, however, the degree of correlation reflected in 
this first term is no longer “linear knowledge,” as it would be called in standard Lens Modeling, 
but instead either “rule-based” or noncompensatory knowledge in the GBLM approach.  

Investigations such as these would thus raise the question of the appropriate 
psychological interpretation of the second term in the LME when using the GBLM as opposed to 
the linear regression approach. To the extent that GBLM analysis yielded a high level of rule-
based knowledge, low residuals for the ecological model, but high residuals for the human judge, 
this second term would be low (due to lack of a high correlation between these residuals), and all 
signs would point to a person correctly following a set of rules, but doing so in a noisy fashion. 
Another interesting case would arise should GBLM analysis yield a high value for the second 
LME term: one interpretation would be that both the ecology and the human’s judgment strategy 
both incorporated either linear or continuous (rather than categorical) cue reliance, a signal that 
perhaps the standard Lens Model rather than the GBLM may provide a more plausible 
description of the judgment system.  

Finally, the possibility may also exist that one type of model (compensatory or 
noncompensatory) provides the best fit to the environment, whereas the opposing model 
provides the best fit to the human’s judgment strategy. A situation such as this may raise even 
more interesting challenges and issues in achieving psychologically plausible interpretations for 
the parameters of the LME resulting from such a case. As we hope to have demonstrated in this 
article, we believe that a toolbox comprised of techniques for inferring both compensatory and 
noncompensatory judgment strategies and descriptions of environmental structure gives rise to 
an almost unlimited set of potentially interesting research questions and opportunities, both 
theoretical and empirical, in the analysis and modeling of human learning and performance. 
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